Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Sci Total Environ ; 927: 172238, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582121

RESUMO

Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 µM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.


Assuntos
Metilação de DNA , Epigênese Genética , Sulfetos , Transcriptoma , Animais , Transcriptoma/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Sulfetos/toxicidade , Epigenoma , Poluentes Químicos da Água/toxicidade , Estresse Fisiológico , Poliquetos/genética , Poliquetos/efeitos dos fármacos , Perfilação da Expressão Gênica
2.
Aquat Toxicol ; 242: 106046, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864387

RESUMO

Aquatic sediments are predicted to be an important sink for released silver nanoparticles (AgNPs). Knowing the long-term effects of AgNPs on benthic deposit-feeders is therefore an important step towards assessing their potential environmental risks. The aim of this study was to examine the effects on survival, growth and reproduction of the deposit-feeding polychaete Capitella teleta exposed for ten weeks to sediment-associated un-coated AgNPs or silver nitrate (AgNO3). C. teleta exhibited tolerance towards exposure to both AgNPs and AgNO3. Significant effects were observed for percentage of pairs that reproduced as well as worm growth after eight weeks, but the effects did not show a clear concentration- or Ag type-dependent pattern. Further investigations of long-term effects of un-coated AgNPs in additional sediment-dwelling organisms are needed and should involve comparisons to coated AgNPs.


Assuntos
Nanopartículas Metálicas , Poliquetos/efeitos dos fármacos , Nitrato de Prata/toxicidade , Poluentes Químicos da Água , Animais , Sedimentos Geológicos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Dev Biol ; 478: 183-204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216573

RESUMO

The mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria. This is especially true in the morphologically diverse Spiralia (≈Lophotrochozoa). Despite several studies of D-V axis formation and neural induction in spiralians, there is no consensus for how these two processes are related, or whether BMP signaling may have played an ancestral role in either process. To determine the function of BMP signaling during early development of the spiralian annelid Capitella teleta, we incubated embryos and larvae in BMP4 protein for different amounts of time. Adding exogenous BMP protein to early-cleaving C. teleta embryos had a striking effect on formation of the brain, eyes, foregut, and ventral midline in a time-dependent manner. However, adding BMP did not block brain or VNC formation or majorly disrupt the D-V axis. We identified three key time windows of BMP activity. 1) BMP treatment around birth of the 3rd-quartet micromeres caused the loss of the eyes, radialization of the brain, and a reduction of the foregut, which we interpret as a loss of A- and C-quadrant identities with a possible trans-fate switch to a D-quadrant identity. 2) Treatment after the birth of micromere 4d induced formation of a third ectopic brain lobe, eye, and foregut lobe, which we interpret as a trans-fate switch of B-quadrant micromeres to a C-quadrant identity. 3) Continuous BMP treatment from late cleavage (4d â€‹+ â€‹12 â€‹h) through mid-larval stages resulted in a modest expansion of Ct-chrdl expression in the dorsal ectoderm and a concomitant loss of the ventral midline (neurotroch ciliary band). Loss of the ventral midline was accompanied by a collapse of the bilaterally-symmetric ventral nerve cord, although the total amount of neural tissue was not greatly affected. Our results compared with those from other annelids and molluscs suggest that BMP signaling was not ancestrally involved in delimiting neural tissue to one region of the D-V axis. However, the effects of ectopic BMP on quadrant-identity during cleavage stages may represent a non-axial organizing signal that was present in the last common ancestor of annelids and mollusks. Furthermore, in the last common ancestor of annelids, BMP signaling may have functioned in patterning ectodermal fates along the D-V axis in the trunk. Ultimately, studies on a wider range of spiralian taxa are needed to determine the role of BMP signaling during neural induction and neural patterning in the last common ancestor of this group. Ultimately, these comparisons will give us insight into the evolutionary origins of centralized nervous systems and body plans.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Poliquetos/embriologia , Poliquetos/metabolismo , Proteínas de Peixe-Zebra/farmacologia , Animais , Padronização Corporal/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/genética , Encéfalo/embriologia , Sistema Digestório/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Olho/embriologia , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Poliquetos/efeitos dos fármacos , Poliquetos/crescimento & desenvolvimento , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo
4.
Environ Sci Pollut Res Int ; 28(21): 26772-26783, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33496946

RESUMO

Pharmaceuticals are significant environmental stressors, since they are utilized around the world; they are usually released in to the aquatic system without adequate treatment and several non-target species can be harmed because of their intrinsic properties. Paracetamol is one of the most widely prescribed analgesics in human medical care. Consequently, this compound is systematically reported to occur in the wild, where it may exert toxic effects on non-target species, which are mostly uncharacterized so far. The objective of the present work was to assess the acute (control, 5, 25, 125, 625 and 3125 µg/L) and chronic (control, 5, 10, 20, 40 and 80 µg/L) effects of paracetamol on behavioural endpoints, as well as on selected oxidative stress biomarkers [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRed)] and the anti-inflammatory activity biomarker cyclooxygenase (COX), in the polychaete Hediste diversicolor (Annelida: Polychaeta). Exposure to paracetamol caused effects on behavioural traits, with increased burrowing time (96 h) and hypoactivity (28 days). In addition, exposure to paracetamol resulted also in significant increases of SOD activity, but only for intermediate levels of exposure, but for both acute and chronic exposures. Both forms of GPx had their activities significantly increased, especially after chronic exposure. Acutely exposed organisms had their GRed significantly decreased, while chronically exposed worms had their GRed activity augmented only for the lowest tested concentrations. Effects were also observed in terms of COX activity, showing that paracetamol absorption occurred and caused an inhibition of COX activity in both exposure regimes. It is possible to conclude that the exposure to concentrations of paracetamol close to the ones in the environment may be deleterious to marine ecosystems, endangering marine life by changing their overall redox balance, and the biochemical control of inflammatory intermediaries. Behaviour was also modified and the burrowing capacity was adversely affected. This set of effects clearly demonstrate that paracetamol exposure, under realistic conditions, it not exempt of adverse effects on marine invertebrates, such as polychaetes.


Assuntos
Acetaminofen/toxicidade , Estresse Oxidativo , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água , Animais , Comportamento Animal , Biomarcadores/metabolismo , Catalase/metabolismo , Inibidores de Ciclo-Oxigenase , Ecossistema , Humanos , Peroxidação de Lipídeos , Poliquetos/metabolismo , Prostaglandina-Endoperóxido Sintases , Poluentes Químicos da Água/toxicidade
5.
Ecotoxicol Environ Saf ; 207: 111219, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931966

RESUMO

Contamination by organic and inorganic compounds remains one of the most complex problems in both brackish and marine environments, causing potential implications for the reproductive success and survival of several broadcast spawners. Ficopomatus enigmaticus is a tubeworm polychaete that has previously been used as a model organism for ecotoxicological analysis, due to its sensitivity and ecological relevance. In the present study, the effects of five trace elements (zinc, copper, cadmium, arsenic and lead), one surfactant (sodium dodecyl sulfate, SDS) and one polycyclic aromatic hydrocarbon (benzo(a)pyrene, B(a)P) on the sperm quality of F. enigmaticus were investigated. Sperm suspensions were exposed in vitro to different concentrations of each selected contaminant under four salinity conditions (10, 20, 30, 35). Possible adverse effects on sperm function were assessed by measuring oxidative stress, membrane integrity, viability and DNA damage. Sperm quality impairments induced by organic contaminants were more evident than those induced by inorganic compounds. SDS exerted the largest effect on sperm. In addition, F. enigmaticus sperm showed high tolerance to salinity variation, supporting the wide use of this species as a promising model organism for ecotoxicological assays. Easy and rapid methods on polychaete spermatozoids were shown to be effective as integrated sperm quality parameters or as an alternative analysis for early assessment of marine and brackish water pollution.


Assuntos
Poliquetos/fisiologia , Espermatozoides/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Arsênio/farmacologia , Bioensaio , Cádmio/toxicidade , Ecotoxicologia/métodos , Masculino , Poliquetos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Salinidade , Oligoelementos/toxicidade
6.
Aquat Toxicol ; 230: 105674, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33307390

RESUMO

Understanding metal toxicity to benthic systems is still an ecotoxicological priority and, although numerous biomarkers exist, a multi-biomarker and endpoint approach with sediment as the delivery matrix combined with life-history relevant exposure timescales is missing. Here we assess potential toxicity by measuring a suite of biomarkers and endpoints after exposing the ecologically important polychaete Alitta(Nereis)virens to sediment spiked with environmentally relevant concentrations of copper and zinc (and in combination) for 3, 6 and 9 months. We compared biomarker and endpoint sensitivity providing a guide to select the appropriate endpoints for the chosen time frame (exposure period) and concentration (relevant to Sediment Quality Guidelines) needed to identify effects for benthic polychaetes such as A. virens. Target bioavailable sediment and subsequent porewater concentrations reflect the global contamination range, whilst tissue concentrations, although elevated, were comparable with other polychaetes. Survival reduced as concentrations increased, but growth was not significantly different between treatments. Metabolic changes were restricted to significant reductions in protein after 9 months exposure across all copper concentrations, and reductions in lipid at high copper concentrations (3 months). Significant changes in feeding behaviour and increases in metallothionein-like protein concentration were limited to the medium and high copper and zinc concentrations, respectively, both after 6 months exposure. Despite data highlighting A. virens' metal tolerance, DNA damage and protein concentrations are the most sensitive biomarkers. Copper and zinc cause biomarker responses at concentrations routinely found in coastal sediments that are characterised as low contamination, suggesting a reappraisal of the current input sources (especially copper) is required.


Assuntos
Dano ao DNA , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/toxicidade , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Cobre/toxicidade , Determinação de Ponto Final , Modelos Teóricos , Poliquetos/genética , Poliquetos/metabolismo , Reino Unido , Zinco/toxicidade
7.
Environ Toxicol Pharmacol ; 82: 103538, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33217557

RESUMO

Pharmaceutical drugs are widespread environmental contaminants, but data about their adverse effects are still limited to a few compounds. This study analyzed the acute (96 h) and chronic (28 days) impacts of environmentally realistic levels of diazepam (acute exposure: 0.001, 0.01, 0.1, 1, 10 µg/L; chronic exposure: 0.1, 1, 10, 100, 1000 ng/L), in the polychaete Hediste diversicolor, by measuring behavioral and biochemical (catalase [CAT], glutathione-S-transferases [GSTs], cholinesterases [ChEs], glutathione peroxidase [GPx], lipid peroxidation [TBARS]) parameters. Acute exposure to diazepam altered behavioral traits, decreasing burrowing times and causing hyperactivity, whilst burrowing time increased and hypoactivity resulted after chronic exposure. All biomarkers were affected after the chronic exposure, with the exception of lipid peroxidation. Our data demonstrate that realistic levels of diazepam may impair behavioral and biochemical traits in polychaetes, suggesting that diazepam exposure presents a significant challenge to the environment that supports these organisms.


Assuntos
Diazepam/toxicidade , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Catalase/metabolismo , Colinesterases/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poliquetos/metabolismo , Poliquetos/fisiologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Environ Toxicol Pharmacol ; 80: 103505, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002593

RESUMO

The release of pharmaceutical chemicals in the biosphere can have unpredictable ecological consequences, and knowledge concerning their putative toxic effects is still scarce. One example of a widely used pharmaceutical that is present in the aquatic environment is ciprofloxacin. Previous indications suggest that this drug may exert several adverse effects on exposed biota, but the characterization of a full ecotoxicological response to this drug is far from complete, especially in estuarine ecosystems. This work aimed to characterize the acute and chronic effects of ciprofloxacin in the polychaete Hediste diversicolor (Annelida: Polychaeta), exposed to environmentally relevant levels of this drug, close to the real concentrations of this pharmaceutical in surface waters. The adopted toxic endpoints were behavioral parameters, combined with a biomarker-based approach (quantification of the activities of catalase (CAT), glutathione-S-transferase (GSTs), cholinesterases (ChEs), glutathione peroxidase (GPx), and lipid peroxidation levels. Exposure to ciprofloxacin caused effects on behavioural traits, such as an increase in burrowing times and hyperactivity, alongside alterations in biomarkers, including a significant increase in CAT activity following acute exposure. In addition, and after both acute and chronic exposure, lipid peroxidation was reduced, while AChE activities were enhanced. It was possible to ascertain the occurrence of pro-oxidative alterations following exposure to low levels of ciprofloxacin, which were counteracted by the triggering of CAT activity. The meaning of the enhancement of AChE activity is not clear, but it appears to be linked with the observed behavioural changes, and may have been associated with the stimulation of the behavioural traits. These data strongly suggest that the presence of ciprofloxacin in estuarine areas is not without risks, and exposed biota, namely polychaete species, are likely to have their ecological roles affected, thereby compromising the chemical, physical and microbiological stability of sediments, which in turn alters nutrient cycles.


Assuntos
Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Catalase/metabolismo , Colinesterases/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Poliquetos/fisiologia
9.
Sci Rep ; 10(1): 18023, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093560

RESUMO

Naturally occurring metals and metalloids [metal(loid)s] are essential for the physiological functioning of wildlife; however, environmental contamination by metal(loid) and plastic pollutants is a health hazard. Metal(loid)s may interact with plastic in the environment and there is mixed evidence about whether plastic ingested by wildlife affects metal(loid) absorption/assimilation and concentration in the body. We examined ingested plastic and liver concentration of eleven metal(loid)s in two seabird species: fairy (Pachyptila turtur) and slender-billed prions (P. belcheri). We found significant relationships between ingested plastic and the concentrations of aluminium (Al), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu) and zinc (Zn) in the liver of prions. We investigated whether the pattern of significant relationships reflected plastic-metal(loid) associations predicted in the scientific literature, including by transfer of metals from ingested plastics or malnutrition due to dietary dilution by plastics in the gut. We found some support for both associations, suggesting that ingested plastic may be connected with dietary dilution / lack of essential nutrients, especially iron, and potential transfer of zinc. We did not find a relationship between plastic and non-essential metal(loid)s, including lead. The effect of plastic was minor compared to that of dietary exposure to metal(oid)s, and small plastic loads (< 3 items) had no discernible link with metal(loid)s. This new evidence shows a relationship between plastic ingestion and liver metal(loid) concentrations in free-living wildlife.


Assuntos
Dieta/efeitos adversos , Poluição Ambiental/efeitos adversos , Fígado/patologia , Metais Pesados/toxicidade , Plásticos/toxicidade , Poliquetos/crescimento & desenvolvimento , Animais , Fígado/efeitos dos fármacos , Poliquetos/efeitos dos fármacos
10.
Ecotoxicol Environ Saf ; 203: 111029, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888609

RESUMO

The chitin synthesis inhibitor teflubenzuron (TFB) is a feed antiparasitic agents used to impede molting of the salmon lice, an ecto-parasite that severely affects the salmon industry. Low absorption of oral administered TFB may cause elevated concentrations in the feces discharged from the salmon into the benthic environment. The polychaete Capitella sp. are often dominant in such habitats and consume organic waste deposited on the sediment. In the present study, Capitella sp. were exposed to doses of TFB in salmon feed of 1, 2 and 4 g TFB kg-1 (0 g TFB kg-1 in control group) over an experimental period of 32 days. Cumulative mortality was 12%-15% in both treatment groups with 1 and 2 g TFB kg-1 and reached 27% in the group with 4 g TFB kg-1. Only the highest dose (4 g TFB kg-1) negatively affected feed intake, growth and respiration of the polychaetes while food conversion efficiency was not affected. At the end of the experiment, the concentrations of TFB in the Capitella sp. were high, in the range of 9.24-10.32 µg g-1 for the three treatment groups. It was suggested that a maximum level of absorption rate was reached, also for the lowest dose. High concentrations of TFB in the Capitella sp. might pose a risk to crustaceans that forage for polychaetes in the vicinity of fish farms. We conclude that the effects of TFB on Capitella sp. may therefore primarily be to the predators rather than the Capitella sp.


Assuntos
Antiparasitários/toxicidade , Benzamidas/toxicidade , Bioacumulação , Sedimentos Geológicos/química , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antiparasitários/metabolismo , Benzamidas/metabolismo , Copépodes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Pesqueiros , Modelos Teóricos , Poliquetos/metabolismo , Salmão/parasitologia , Análise de Sobrevida , Poluentes Químicos da Água/metabolismo
11.
Ecotoxicol Environ Saf ; 205: 111094, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818876

RESUMO

Previous studies suggested the suitability of the brackish-water serpulid (Ficopomatus enigmaticus) to be used as model organism for both marine and brackish waters monitoring, by the performance of sperm toxicity and larval development assays. The present study focused on larval development after the exposure of two F. enigmaticus populations (Mediterranean and Atlantic, collected in Italy and Portugal, respectively) to different trace elements (copper, mercury, arsenic, cadmium, and lead) at different concentrations. Results of larval development assays were presented as the percentage of abnormal developed larvae. The effect, measured in terms of EC50 for all toxicants tested, showed that mercury was the most toxic metal for larvae of both populations. Specifically, the tested trace elements may be racked in the following order from the highest to the lowest toxicity: Mediterranean: mercury > copper > lead > arsenic > cadmium; Atlantic: mercury > copper > cadmium > arsenic > lead. Responses of both populations were similar for arsenic. Lead was the least toxic element for the Atlantic population, while cadmium showed the least toxicity for the Mediterranean population. These preliminary results demonstrate the sensitivity and suitability of the organisms to be used in ecotoxicological bioassays and monitoring protocols. Moreover, chemical analyses on soft tissues and calcareous tubes of collected test organisms and their sampling site water were performed, to identify and quantify the concentration of the tested trace elements in these 3 matrices. Populations exhibited less sensitivity to a certain element together with a relevantly higher concentration of the same element in soft tissues. This may indicate a certain resistance to particular contaminant toxic effects by organisms that tend to accumulate the same toxicant. This highlights the potential correlation between wild-caught test organisms' responses and a deep characterization of the sampling site to identify putative abnormalities or differences in model organism response during bioassay execution.


Assuntos
Bioensaio/métodos , Monitoramento Ambiental/métodos , Oligoelementos/metabolismo , Animais , Arsênio/análise , Cádmio/análise , Ecotoxicologia , Substâncias Perigosas/análise , Itália , Larva/efeitos dos fármacos , Mercúrio/análise , Poliquetos/efeitos dos fármacos , Portugal , Oligoelementos/análise
12.
Environ Toxicol Pharmacol ; 80: 103455, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32663516

RESUMO

Unexpected increasing trends in the concentration of contaminants in European perch (Perca fluviatilis) and in activity of ethoxyresorufin-O-deethylase (EROD) in European perch and eelpout (Zoarces viviparus) have been observed at a Swedish coastal reference site. This study uses data from different sources to investigate plausible explanations. The results showed that a change in diet and an improved overall condition coincide with an increase in mercury in European perch. Furthermore, an increase in several organic contaminants in European perch coincided with the introduction of an invasive deep-burrowing polychaete, which likely contributed to the release of contaminants through bioturbation. The increase in EROD-activity in both species seems to be related to contaminants that reach the fish through the water rather than the diet. The results show that for contaminants that are taken up via the diet, trends in contamination can be opposite for different species of fish in the same area.


Assuntos
Monitoramento Biológico/métodos , Mercúrio/metabolismo , Percas/metabolismo , Água do Mar/química , Poluentes Químicos da Água/metabolismo , Animais , Organismos Aquáticos/efeitos dos fármacos , Biomarcadores/metabolismo , Ecossistema , Mercúrio/análise , Oceanos e Mares , Poliquetos/efeitos dos fármacos , Poliquetos/metabolismo , Suécia , Poluentes Químicos da Água/análise
13.
Environ Toxicol Pharmacol ; 77: 103377, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32251999

RESUMO

The presence of anthropogenic drugs in the aquatic ecosystems is a reality nowadays, and a large number of studies have been reporting their putative toxic effects on wildlife. However, the majority of the studies published so far uses standard organisms, whose probability of becoming in contact with drugs in real scenarios of contamination is at least, low. The use of autochthonous organisms in ecotoxicity testing is thus mandatory, and the present study aimed to assess the feasibility of assessing oxidative based stress responses (enzymatic defenses, such as catalase, glutathione-s-transferases, and lipid peroxidation; neurotoxicity as an indirect outcome of oxidizing conditions) on a polychaete species, Hediste diversicolor, after being acutely and chronically exposed to the widely employed drug paracetamol. H. diversicolor showed to be responsive to paracetamol exposure. Data obtained after acute exposure to paracetamol showed that no antioxidant adaptive response was established, but cholinesterasic activity was enhanced. On the contrary, long term exposure of H. diversicolor individuals to paracetamol resulted in clear pro-oxidative effects, with catalase and cholinesterase inhibition, and a significant reduction in the levels of lipoperoxidation. Considering that some of the tested levels (especially those of the chronic test) were already reported in the wild, the here-obtained results are of high environmental significance. In addition, chronic exposure regime yielded more significant results, with important modification of more parameters, suggesting that realistic conditions of exposure are more suited for an integrated assessment of toxicity of drugs in aquatic organisms.


Assuntos
Acetaminofen/farmacologia , Analgésicos/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Acetilcolinesterase/metabolismo , Animais , Catalase/metabolismo , Relação Dose-Resposta a Droga , Estuários , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poliquetos/metabolismo
14.
Mar Environ Res ; 155: 104882, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072982

RESUMO

Marine sediments are a major sink of organic matter, playing a crucial role in the global cycling of major elements. Macrofauna, through the reworking of particles and movement of solutes (bioturbation), enhances oxic conditions and the sediment metabolic capacity. Increases in the inputs of organic matter can lead to profound changes in the seabed and impact benthic ecological functions. Through a microcosm experiment, the effect of bioturbation of the polychaete Lumbrineris latreilli on biogeochemical fluxes under scenarios of increasing loads of organic matter was quantified. We found that bioturbation can buffer the negative consequences of anoxic conditions produced by organic enrichment, preventing the build-up of toxic by-products derived from anaerobic metabolic pathways by maintaining oxic conditions. However, the maintenance of oxic conditions by bioturbation is at the expense of limiting the sediment metabolic capacity. The maintenance of oxic conditions may limit anaerobic metabolic pathways, and consequently, the metabolic capacity of sediment. Thus, under organic matter pollution conditions, bioturbation may lessen the metabolic capacity of the sediment.


Assuntos
Sedimentos Geológicos/química , Poliquetos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Poliquetos/efeitos dos fármacos
16.
Environ Sci Pollut Res Int ; 27(4): 3574-3583, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30353435

RESUMO

The presence of plastic debris < 5 mm called microplastics (MPs) which results mainly from macroplastic's fragmentation has been reported in aquatic ecosystems. Several studies have shown that MPs are persistent and their accumulation was observed in various aquatic species. However, the majority of studies focused on marine species, and much less on continental and estuarine biota. The goal of the present study was to investigate the effects of a mixture of two types of MPs (polyethylene and polypropylene), frequently found in natural environments, towards the ragworm Hediste diversicolor to determine their accumulation in organisms exposed through the water phase or sediment. Two concentrations of exposure were selected for medium and heavily contaminated areas reported for water phase (10 and 100 µg/L) and sediment (10 and 50 mg of MPs/kg). To study the potential toxic effect of MPs, immune parameters were selected since they are involved in many defense mechanisms against xenobiotics or infectious agents. An average number of MP items/worm ranging from 0 to 2.5 and from 1 to 36 were identified in animals exposed to the lowest and the highest concentration of MPs through water exposure. In worms exposed through sediment, less than 1 MP/worm was found and a greater number of particles were identified in depurated sediment. For immunotoxic impact, MP exposure induced a decrease in coelomocytes viability, but no alteration of phagocytosis activity, phenoloxydase, and acid phosphatase was measured. This study brings new results on the potential accumulation and immunotoxicity of MPs for the ragworm H. diversicolor who plays a key role in the structure and functioning of estuarine ecosystem.


Assuntos
Exposição Ambiental/efeitos adversos , Poluição Ambiental/análise , Microplásticos/efeitos adversos , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Poluição Ambiental/efeitos adversos , Plásticos , Poliquetos/fisiologia
17.
Mar Pollut Bull ; 143: 134-139, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31789148

RESUMO

The bioaccumulation and the main source of total Hg (THg) and methylmercury (MMHg) in the deposit-feeding polychaete Neanthes japonica collected in Jinzhou Bay, China, were investigated. Compared with the historical data, THg bioaccumulation in polychaetes collected in sediment of Jinzhou Bay was distinctly higher due to higher sediment THg concentration, but MMHg bioaccumulation was significantly lower. THg accumulation in polychaetes mainly derived from its accumulation in sediment. However, MMHg bioaccumulation in polychaetes did not correlate with Hg concentration in sediment. Besides sediment ingestion, MMHg accumulation in polychaetes may partially source from the process of in vivo transformation. The in vivo Hg methylation may take place in polychaetes, according to the excellent correlation between MMHg concentration and THg and inorganic Hg concentration in polychaetes. The biochemical characters in polychaete body, the oxidation-reduction environment and the microbial activity in polychaete gut may be beneficial to in vivo Hg methylation.


Assuntos
Sedimentos Geológicos/análise , Mercúrio/farmacocinética , Compostos de Metilmercúrio/farmacocinética , Poliquetos/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Baías , Bioacumulação , China , Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/análise
18.
Biofouling ; 35(8): 945-957, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31687858

RESUMO

Ocean uptake of anthropogenic CO2 causes ocean acidification (OA), which not only decreases the calcification rate, but also impairs the formation of calcareous shells or tubes in marine invertebrates such as the dominant biofouling tubeworm species, Hydroides elegans. This study examined the ability of tubeworms to resume normal tube calcification when returned to ambient pH 8.1 from a projected near-future OA level of pH 7.8. Tubeworms produced structurally impaired and mechanically weaker calcareous tubes at pH 7.8 compared to at pH 8.1, but were able to recover when the pH was restored to ambient levels. This suggests that tubeworms can physiologically recover from the impacts of OA on tube calcification, composition, density, hardness and stiffness when returned to optimal conditions. These results help understanding of the progression of biofouling communities dominated by tubeworms in future oceans with low pH induced by OA.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Incrustação Biológica , Calcificação Fisiológica/efeitos dos fármacos , Poliquetos/efeitos dos fármacos , Água do Mar/química , Ácidos , Exoesqueleto/química , Exoesqueleto/efeitos dos fármacos , Animais , Organismos Aquáticos/fisiologia , Incrustação Biológica/prevenção & controle , Dióxido de Carbono/toxicidade , Previsões , Concentração de Íons de Hidrogênio , Oceanos e Mares , Poliquetos/fisiologia , Poluentes Químicos da Água/toxicidade
19.
Elife ; 82019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31526475

RESUMO

The swimming larvae of many marine animals identify a location on the sea floor to undergo metamorphosis based on the presence of specific bacteria. Although this microbe-animal interaction is critical for the life cycles of diverse marine animals, what types of biochemical cues from bacteria that induce metamorphosis has been a mystery. Metamorphosis of larvae of the tubeworm Hydroides elegans is induced by arrays of phage tail-like contractile injection systems, which are released by the bacterium Pseudoalteromonas luteoviolacea. Here we identify the novel effector protein Mif1. By cryo-electron tomography imaging and functional assays, we observe Mif1 as cargo inside the tube lumen of the contractile injection system and show that the mif1 gene is required for inducing metamorphosis. Purified Mif1 is sufficient for triggering metamorphosis when electroporated into tubeworm larvae. Our results indicate that the delivery of protein effectors by contractile injection systems may orchestrate microbe-animal interactions in diverse contexts.


Assuntos
Proteínas de Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos , Metamorfose Biológica , Poliquetos/crescimento & desenvolvimento , Poliquetos/microbiologia , Pseudoalteromonas/metabolismo , Animais , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Poliquetos/efeitos dos fármacos , Transporte Proteico
20.
Metabolomics ; 15(8): 108, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31367897

RESUMO

INTRODUCTION: Zinc is a heavy metal commonly detected in urban estuaries around Australia. Boscalid is a fungicide found in estuaries, both in water and sediment, it enters the system predominantly through agricultural run-off. Zinc is persistent while boscalid breaks down, with a half-life of 108 days. Both contaminants are widely distributed and their effects on ecosystems are not well understood. OBJECTIVES: The aim of this study was to determine the metabolite changes in Simplisetia aequisetis (an estuarine polychaete) following laboratory exposure to a sub-lethal concentration of zinc or boscalid over a 2-week period. METHODS: Individuals were collected at six time points over a 2-week period. Whole polychaete metabolites were extracted and quantified using a multi-platform approach. Polar metabolites were detected using a semi-targeted GC-MS analysis and amine containing compounds were analysed using a targeted LC-MS analysis. Total lipid energy content was also analysed for Simplisetia aequisetis. RESULTS: The pathways that responded to zinc and boscalid exposure were alanine, aspartate and glutamate metabolism (AAG); glycine, serine and threonine metabolism (GST) and metabolites associated with the tricarboxylic acid cycle (TCA). Results showed that changes in total abundance of some metabolites could be detected as early as 24-h exposure. Changes were detected in the metabolites before commonly used total lipid energy assays identified effects. CONCLUSION: A multi-platform approach provided a holistic overview of the metabolomic response to contaminants in polychaetes. This approach shows promise to be used in biomonitoring programs to provide early diagnostic indicators of contamination and exposure.


Assuntos
Compostos de Bifenilo/farmacologia , Cloretos/farmacologia , Metabolômica , Niacinamida/análogos & derivados , Poliquetos/efeitos dos fármacos , Poliquetos/metabolismo , Compostos de Zinco/farmacologia , Animais , Compostos de Bifenilo/administração & dosagem , Cloretos/administração & dosagem , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Fatores de Tempo , Compostos de Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...